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A uniformly valid balanced model that represents the quasi-geostrophic model’s
counterpart in the equatorial region is derived. The quasi-geostrophic model itself
fails in the equatorial region because it is only valid where the dominant balance
is geostrophic, i.e. where the Rossby number is small. The smallness of the Rossby
number is assumed in the quasi-geostrophic model’s standard derivation and therefore
this derivation cannot be repeated for the equatorial region. An alternative derivation
of the quasi-geostrophic model that is independent of the Rossby number was
presented by Leith in 1980, using the geometric framework of nonlinear normal mode
initialization. Its independence of the Rossby number allows it to be repeated for the
equatorial region, leading to an equatorial balanced model that thus represents the
equatorial counterpart of the quasi-geostrophic model. As such it also coincides with
the quasi-geostrophic model sufficiently far away from the equator. Its dispersion
relation can be expressed in an explicit analytic form and, compared to that of
other balanced models of similar simplicity, approximates that of the shallow water
equations strikingly well.

1. Introduction
A large variety of atmospheric and oceanic flows, ranging from mesoscale eddies to

the general circulation, is dominantly balanced flows and can therefore be described by
balanced models. These balanced models facilitate theoretical and numerical studies
because by construction they describe only the low-frequency dynamics represented
by Rossby waves whereas the primitive equations, i.e. the full equations of motion,
also describe the high-frequency dynamics represented by inertia–gravity waves. The
most prominent of such balanced models is the quasi-geostrophic model (e.g. Salmon
1998; Vallis 2006).

In the case of a shallow layer of fluid with constant density considered in this
paper, the primitive equations become the shallow water equations. They consist of
the three evolution equations of the horizontal velocity components and the height.
By contrast, a balanced model derived from the shallow water equations consists
of only one evolution equation and two balance relations. In the case of the quasi-
geostrophic model, they are the evolution equation of linear potential vorticity and
two geostrophic balance relations expressing geostrophy. The derivation thus reduces
the number of evolution equations from three to one, which reflects the fact that the
quasi-geostrophic model, like any other balanced model, has only one low-frequency
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normal mode represented by Rossby waves, whereas the shallow water equations have
in addition two high-frequency normal modes represented by inertia–gravity waves.

In the majority of cases the dynamics is characterized by either the Rossby or
Froude number or both being small as well as a separation between the frequencies
of Rossby and inertia–gravity waves. These two characteristics allow balanced models
to be asymptotic approximations of the primitive equations. An example is the quasi-
geostrophic model, valid outside the equatorial region, where the Rossby number
is small and the frequencies separated. The dynamics in the equatorial region,
unfortunately, lacks these two characteristics because the Rossby number is large
and tends to infinity at the equator and the frequencies are not clearly separated,
due to the equatorial Kelvin wave (e.g. Bokhove 1997) and the mixed Rossby–gravity
wave, also referred to as the Yanai wave. However, the concept of balance remains
robust well beyond cases of flows that can be described by asymptotic approximations
(e.g. Tribbia 1979; McIntyre & Norton 2000) and therefore balanced models for the
equatorial region are generally possible.

There are already balanced models in the literature that are valid in the equatorial
region. A group of such models share a simple construction. In the case of the shallow
water equations, they are constructed by re-writing the shallow water equations
as three evolution equations of potential vorticity, or some approximation to it,
velocity divergence and acceleration divergence. For the balanced model, the evolution
equation is taken to be that of potential vorticity and the two balance relations
obtained by setting to zero two time derivatives of suitably chosen orders of the two
other variables, i.e. velocity divergence and acceleration divergence (e.g. Mohebalhojeh
& Dritschel 2001; Mohebalhoje & McIntyre 2007a ,b). A well-known balanced model
with a similar construction is the Bolin–Charney model (Bolin 1955; Charney 1955,
1962), often referred to as the Balance Equations, where a nonlinear redefinition of
acceleration divergence and its time derivative are used to define the two balance
relations (Mohebalhoje & McIntyre 2007a ,b).

Undoubtedly, the most prominent balanced model is the quasi-geostrophic model,
but it is not valid in the equatorial region. This motivates the derivation of its
counterpart in the equatorial region, presented in this paper and referred to as the
equatorial balanced model. It differs from the existing balanced models and compared
to them approximates more accurately the dispersion relation of the shallow water
equations. To derive it we cannot repeat the standard derivation of the quasi-
geostrophic model for the equatorial region because it requires the Rossby number
to be small, which is not the case. Physically, this means that in the equatorial region
the dominant balance is not simply between two forces, as it is the case outside it,
where it defines geostrophic balance and thus implies a small Rossby number. We
therefore choose instead to repeat for the equatorial region the alternative derivation
of the quasi-geostrophic model within a geometric framework given by Leith (1980)
because it is independent of Rossby number.

Leith’s derivation uses the phase space in which every possible state of a fluid is
uniquely represented by a single point. In the case of the shallow water equations, the
state of the fluid is given by the two horizontal velocity components and the height
perturbation at every horizontal location. At each horizontal location it can therefore
be uniquely represented by a single point in a three-dimensional space. If the three
variables are Fourier transformed then there is a three-dimensional space not for every
horizontal location but rather for every horizontal wavenumber. Combining all such
mutually orthogonal three-dimensional spaces comprise the phase space. Each of the
three-dimensional spaces is spanned by three orthonormal vectors and these are taken
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to be the eigenvectors of the linearized shallow water equations. The corresponding
eigenvalues, which are the characteristic frequencies, allow the eigenvectors to be
distinguished between those of the one low-frequency or Rossby normal mode,
represented by Rossby waves, and the two high-frequency or gravity normal modes,
represented by inertia–gravity waves. Thus, each state of the fluid can be decomposed
into a high- and a low-frequency component by projecting the corresponding single
point in phase space onto the mutually orthogonal Rossby and gravity manifolds,
or subspaces, spanned by the eigenvectors associated with the Rossby and gravity
normal modes, respectively. The Rossby and gravity normal modes and manifolds
are in Leith (1980) called rotational and gravitational, respectively.

In the special case of linear dynamics, the balanced dynamics is described by
the linearized primitive equations, which in our case are the linearized shallow water
equations, with an initial state of the fluid represented by a single point on the Rossby
manifold. This single point would then always remain on the Rossby manifold during
the evolution, thus corresponding to low-frequency, i.e. balanced, dynamics.

In the general case of nonlinear dynamics, the single point initially on the Rossby
manifold would move off it. This would create a projection onto the gravity manifold
and thus the dynamics would contain an unwanted high-frequency component.
Balanced states with minimal excitation of high-frequency components nevertheless
exist and are represented by points on the slow manifold (Leith 1980) in phase space.
Similarly to the linear case, for which the single point representing the dynamics
remains on the Rossby manifold, in the nonlinear case the single point remains on
the slow manifold. This is a practical view although the slow manifold in its strict
sense does not exist and is rather a thin stochastic layer (Ford, McIntyre & Norton
2000), which however is not of concern in this paper. Finding the slow manifold by
an iterative method has been a central goal of nonlinear normal mode initialization
(Baer 1977; Baer & Tribbia 1977; Machenhauer 1977). The first iterative step gives
an approximation to the slow manifold. Leith (1980) made the remarkable discovery
that for the case of a mid-latitude f -plane the evolution of a single point on this
approximate slow manifold projected onto the Rossby manifold is described by the
quasi-geostrophic model. This alternative derivation of the quasi-geostrophic model
is independent of Rossby number and generally not restricted to the outside of the
equatorial region. We therefore repeat it for the case of an equatorial β-plane and
thus derive the equatorial counterpart of the quasi-geostrophic model, referred to as
the equatorial balanced model.

The quasi-geostrophic model has been widely used to study strongly nonlinear
dynamics in the mid-latitudes, also known as geostrophic turbulence, featuring
processes such as energy cascades and the formation and maintenance of zonal flows.
Theiss (2004) showed, using the quasi-geostrophic model, that these phenomena
change with decreasing latitude. This has motivated us to derive the equatorial
balanced model as it allows the study of these phenomena to be extended to the
equatorial region, where the quasi-geostrophic model is invalid.

In the following section, we review the geometric framework used by Leith (1980)
in more specific terms. The shallow water equations are introduced in § 3 and we
present in § 4 the derivation of the quasi-geostrophic model on a mid-latitude f -plane
within this geometric framework by analogy to Leith (1980). This then serves in § 5
as guidance to repeat the derivation on an equatorial β-plane, giving the equatorial
balanced model that is thus the equatorial counterpart of the quasi-geostrophic model.
Limits in which the equatorial balanced model takes simpler forms are investigated in
§ 6, extensions needed to describe also bounded, forced and stratified fluids are given
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in § 7, comparisons of the equatorial balanced model to other balanced models of
comparable simplicity are made in § 8. Section 9 summarizes the equatorial balanced
model and its properties.

2. Geometric framework
Every possible state of a fluid can be represented by a single point in phase space, as

described in the previous section. This single point at a particular time t is expressed
by the vector xs(t). In our case of the dynamics of a shallow layer of fluid with
constant density described by the shallow water equations, the vector takes on the
form xs(t) = [u(·, t), η(·, t)], where u = (u, v) is the horizontal velocity vector with u

and v being its components in the x, or zonal, direction and y, or meridional, direction,
respectively, η the scaled height perturbation, and the dots represent the dependence
on the horizontal location either in physical, wavenumber or physical–wavenumber
space.

In terms of the vector xs , the primitive equations, which in our case are the shallow
water equations, take the general form

ẋs = −iLxs + N(xs), (2.1)

where the dot represents the partial time derivative, L is a linear Hermitian operator,
N a nonlinear vector function and i the imaginary unit. Because L is Hermitian its
eigenvectors are a complete orthogonal set (e.g. Wilkinson 1988, p. 25) and therefore
they are taken to span the phase space. They can be partitioned into sets of three
eigenvectors, where each set corresponds to a particular horizontal location in either
physical, wavenumber or physical–wavenumber space. The eigenvectors respectively
corresponding to the smallest eigenvalue in a set are those of the one low-frequency
Rossby normal mode and span the Rossby manifold. The remaining eigenvectors are
those of the two high-frequency gravity normal modes and span the gravity manifold.
The phase space is therefore spanned by the mutually orthogonal Rossby and gravity
manifolds.

The slow manifold in phase space, as described in the previous section, is defined by
Machenhauer (1977) by Gẋs = 0, where G is an operator projecting a point in phase
space onto the gravity manifold. In the special case of linear dynamics, applying this
definition to (2.1) and using the fact that in this case N =0, gives the condition
GLxs = 0. The operators G and L commute, i.e. GL = LG, because they share the
same set of eigenvectors (e.g. Wilkinson 1988, p. 52). Furthermore, any vector in the
gravity manifold can be decomposed into a linear combination of eigenvectors of
L. Using these two properties, allows the condition to be written as Gxs = 0. This
implies that xs must lie on the Rossby manifold and therefore in the special case of
linear dynamics, the slow manifold is the Rossby manifold. For the general case of
nonlinear dynamics, we repeat the steps discussed above but with N �= 0 and use the
trivial identity G = GG. The condition describing the slow manifold then becomes

Gxs = −i (LG)−1 GN(xs). (2.2)

This implies that the slow manifold is distinct from the Rossby manifold. The slow
manifold therefore has a non-zero projection onto the gravity manifold, which is
inconsistent with its definition, given by Gẋs = 0. Although this could be corrected
(Baer 1977), we do not make the correction because it has no effect on the first step
of the iteration below, which is the only step of concern in this paper.
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Condition (2.2) is solved iteratively. As the first step, a vector in the Rossby
manifold, denoted by xs = ys

0, is inserted on the right-hand side of (2.2), resulting
in xs = zs

1 on the left-hand side, where zs
1 denotes a vector in the gravity manifold.

This can be generalized to xs = ys
0 + zs

1 because of G ys
0 = 0. This first iterative step

therefore defines a function of the form zs
1( ys

0), which describes an approximate slow
manifold. As the second step, xs = ys

0 + zs
1 is inserted on the right-hand side, resulting

in xs = ys
0 + zs

2 on the left-hand side and so on until the iteration converges and thus
the slow manifold is obtained.

The approximate slow manifold obtained by the first iterative step is identical
to that obtained by the Baer–Tribbia initialization scheme (Baer & Tribbia 1977)
to first order, which is given by (2.6a) in Tribbia (1979). This becomes apparent by
establishing the one-to-one correspondence between Tribbia’s and our notation, which
is ξ = xs , y = Gxs , Λy y = −iLGxs , εGy(ξ, ξ ) = GN(xs) and ξ0 = ys

0. The Baer–Tribbia
initialization scheme, unlike the scheme based on Machenhauer (1977) adopted above,
requires a frequency separation. Tribbia (1979), however, shows that for the case of an
equatorial β-plane, on which there is no complete frequency separation, it nevertheless
performs well. This thus demonstrates for the equatorial balanced model derived in
this paper the general understanding, noted in § 1, that the concept of balance remains
robust even in cases that lack a frequency separation.

The evolution of a single point on the above approximate slow manifold represents
an approximate balanced dynamics. In order to obtain an equation describing this
evolution, we take the definition of the approximate slow manifold, i.e. inserting as
above xs = ys

0 on the right-hand side and xs = ys
0 + zs

1 on the left-hand side of (2.2).
Retracing the steps from (2.2) to (2.1) then gives

ẋs = −iLxs + N( ys
0), (2.3)

where in this case xs = ys
0 + zs

1. Leith (1980) points out that rather than considering
the evolution on the approximate slow manifold described by (2.3), its projection
onto the Rossby manifold can be considered. The evolution on the approximate slow
manifold is then determined diagnostically, using the definition of the approximate
slow manifold, given by zs

1( ys
0). The required projection operator is denoted by R. It

commutes with L for the same reason G commutes with L, explained above, as well
as with the partial time derivative. The evolution described by (2.3) projected onto
the Rossby manifold, using Rxs = ys

0, is therefore given by

ẏs
0 = −iL ys

0 + RN( ys
0). (2.4)

Leith (1980) shows that (2.4) on a mid-latitude f -plane is identical to the quasi-
geostrophic model. This fundamental insight inspires us to consider (2.4) on an
equatorial β-plane, which gives an equatorial balanced model that thus is the
equatorial counterpart of the quasi-geostrophic model.

3. Shallow water equations
The primitive equations are in this paper always those describing the dynamics of

a shallow layer of fluid with constant density. They are therefore the shallow water
equations, given by

Du
Dt

+ f k̂ × u = −g∇h (3.1)

∂h

∂t
+ ∇ · (hu) = 0, (3.2)
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where the horizontal velocity vector u and the height h depend in this case on
(x, t) with x = (x, y) being the horizontal location in physical space. Furthermore,

we have D/Dt = ∂/∂t + u · ∇, f the Coriolis parameter, k̂ the vertical unit vector,
g the acceleration due to gravity and ∇ = (∂/∂x, ∂/∂y). The height is expressed
as h = H +

√
H/g η, where H is the layer depth at rest and

√
H/g η the height

perturbation. The scaling of the height perturbation gives η the dimension of velocity.
In terms of η, (3.1) and (3.2) become

Du
Dt

+ f k̂ × u = −c∇η (3.3)

∂η

∂t
+ ∇ · [(c + η)u] = 0, (3.4)

where c =
√

gH . In the geometric framework, introduced in the previous section, the
shallow water equations (3.3) and (3.4) have the general form (2.1), where

L =

⎛
⎜⎝

0 if −ic ∂
∂x

−if 0 −ic ∂
∂y

−ic ∂
∂x

−ic ∂
∂y

0

⎞
⎟⎠ , N =

⎛
⎜⎝

−u · ∇u

−u · ∇v

−∇ · (ηu)

⎞
⎟⎠ , xs =

⎛
⎜⎝

u(x, t)

v(x, t)

η(x, t)

⎞
⎟⎠ . (3.5)

The linear operator L is Hermitian (appendix A). This implies that its eigenvalues,
which are the characteristic frequencies of the shallow layer of fluid with constant
density, are real and that its eigenvectors are a complete set of orthogonal vectors
(e.g. Wilkinson 1988, p. 25), which are therefore taken to span the phase space. To
determine the eigenvalues and eigenvectors, we solve

(L − ωI) xs = 0, (3.6)

where I is the identity matrix and ω an eigenvalue, satisfying det(L − ωI) = 0. We
re-write (3.6) by first expressing xs in terms of its Fourier transform in the x-direction,
which takes the form

[u(x, t), η(x, t)] =
1√
2π

∫ ∞

−∞
[ũ(k′, y, t), η̃(k′, y, t)]eik′x dk′. (3.7)

We then multiply by exp(−ikx)/
√

2π and integrate over all x, which gives

(L − ωI) xs =

⎛
⎜⎝

−ω if ck

−if −ω −ic ∂
∂y

ck −ic ∂
∂y

−ω

⎞
⎟⎠

⎛
⎜⎝

ũ(k, y, t)

ṽ(k, y, t)

η̃(k, y, t)

⎞
⎟⎠ = 0, (3.8)

where k is the wavenumber in the x-direction and the dependence of xs changed
from (x, t) to (k, y, t). For the case k �= 0, we use the row manipulations given in
appendix B, thus re-writing (3.8) as

(L−ωI ) xs =

⎛
⎜⎜⎝

(
ω
c

)2− k2 ik ∂
∂y

− iω
c

f

c
0

0 iω
c

∂
∂y

− i f

c
k

(
ω
c

)2 − k2

0 ω
[(

ω
c

)2 − k2 + ∂2

∂y2 − f 2

c2

]
− ∂f

∂y
k 0

⎞
⎟⎟⎠

⎛
⎜⎝

ũ(k, y, t)

ṽ(k, y, t)

η̃(k, y, t)

⎞
⎟⎠= 0.

(3.9)

This is used in the following sections to calculate the eigenvalues and eigenvectors
for specific cases of f .
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4. Quasi-geostrophic model
Leith (1980) uses the geometric framework to derive the quasi-geostrophic model.

His approach is outlined in general terms in § 2 and in this section we present as
a concrete example the derivation of the quasi-geostrophic model from the shallow
water equations on an f -plane. This serves in particular as guidance for the derivation
of the equatorial balanced model in the next section.

For an f -plane, f = f0, where f0 is a constant. To determine the eigenvalues and
eigenvectors for this particular case we solve (3.8) for k = 0 and (3.9) for k �= 0. We
first express xs in (3.8) and (3.9) in terms of its Fourier transform in the y-direction,
which takes the form

[ũ(k, y, t), η̃(k, y, t)] =
1√
2π

∫ ∞

−∞
[û(k, l′, t), η̂(k, l′, t)]eil′y dl′. (4.1)

We then multiply by exp(−ily)/
√

2π, and integrate over all y, which gives⎛
⎜⎝

−ω if0 0

−if0 −ω cl

0 cl −ω

⎞
⎟⎠

⎛
⎜⎝

û(k, t)

v̂(k, t)

η̂(k, t)

⎞
⎟⎠ = 0 (4.2)

and ⎛
⎜⎜⎝

(
ω
c

)2 − k2 −kl − iω
c

f0

c
0

0 −ω
c
l − i f0

c
k

(
ω
c

)2 − k2

0 ω
[(

ω
c

)2 − k2 − l2 − f 2
0

c2

]
0

⎞
⎟⎟⎠

⎛
⎜⎝

û(k, t)

v̂(k, t)

η̂(k, t)

⎞
⎟⎠ = 0, (4.3)

for k = 0 and k �= 0, respectively, where l is the wavenumber in the y-direction and
k = (k, l) the wavenumber vector. The eigenvalues for k = 0 have the same general
form as those for k �= 0, which are the solutions of the bottom centre matrix element
in (4.3) set to zero and are given by

ωR = 0, ωG+ = cσ, ωG− = −cσ, (4.4)

where σ =
√

k2 + l2 + f 2
0 /c2. The corresponding eigenvectors also have the same

general forms for k = 0 and k �= 0 and are given by

êR =
1

σ

⎛
⎜⎝

−il

ik
f0

c

⎞
⎟⎠ , êG+ =

1√
2|k|σ

⎛
⎜⎝

σk + i f0

c
l

σ l − i f0

c
k

k2 + l2

⎞
⎟⎠ , êG− =

1√
2|k|σ

⎛
⎜⎝

−σk + i f0

c
l

−σ l − i f0

c
k

k2 + l2

⎞
⎟⎠ ,

(4.5)

where the use of the hat on each eigenvector indicates that the eigenvectors are
normalized and where |k| =

√
k2 + l2. As stated in the previous section, the eigenvalues

are real and the eigenvectors are a complete orthogonal set. The pair ωR and
êR represents the low-frequency Rossby normal mode and ωG± and êG± the high-
frequency gravity normal modes. The eigenvector êR spans the Rossby manifold on
which a vector ys

0 is expressed as

ys
0 = (ûR, η̂R) = êR(k)R(k, t), (4.6)

where R(k, t) is the coordinate of the vector ys
0 on the Rossby manifold.
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To understand what the Rossby manifold represents physically, we Fourier
transform (4.6), using first (4.1) and then (3.7), giving

ys
0 = (uR, ηR) = eR(x)ψ(x, t), (4.7)

where eR(x) is not normalized and given by

eR(x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

− ∂

∂y

∂

∂x

f0

c

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.8)

and

ψ(x, t) =
1

2π

∫ ∞

−∞

∫ ∞

−∞

R(k, t)

σ
eik·x dk. (4.9)

Re-writing (4.7) by eliminating ψ(x, t), results in

f0 k̂ × uR = −c∇ηR, (4.10)

which is the geostrophic balance relation. A vector ys
0 on the Rossby manifold

therefore represents a state of the fluid that is in geostrophic balance.
In § 2 it is stated that for the present case of an f -plane, (2.4) is identical to the

quasi-geostrophic model. To verify this, we specify R = êR · ê†
R , where ‘†’ denotes

the conjugate transpose, or adjoint, defined in appendix A, and multiply (2.4) from
the left by e†

R , where eR is not normalized. Because ê†
R · êR = 1, we thus obtain

e†
R · ẏs

0 = −ie†
R · L ys

0 + e†
R · N( ys

0). (4.11)

Because e†
R · ys

0 = e†
R · xs and ys

0 is an eigenvector of L, this can be written as

e†
R · ẋs = −ie†

R · Lxs + e†
R · N( ys

0), (4.12)

which is identical to (2.3) multiplied from the left by e†
R .

An explicit expression for the nonlinear term in (4.11) or (4.12) is obtained in a
similar way as those above for the linear terms. We thus substitute (3.7) with (4.1)
into N in (3.5), multiply by exp(−ik · x)/2π, integrate over all x, and multiply the
result from the left by e†

R .
Because ys

0, given by (4.6), is an eigenvector of L with a zero eigenvalue, as shown
in (4.4), the first term on the right-hand side of (4.11) vanishes and thus (4.11) becomes

e†
R · ẏs

0 = e†
R · N( ys

0). (4.13)

Substituting ys
0 given by the first equation in (4.6) into (4.13) and Fourier transforming

as defined by (4.1) and (3.7), gives

∂q

∂t
+ uR · ∇q = 0, (4.14)

where

q =
∂vR

∂x
− ∂uR

∂y
− f0

c
ηR. (4.15)

By using (4.7), these can be re-written as

∂q

∂t
+ J (ψ, q) = 0, (4.16)
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where J (ψ, q) = ∂ψ/∂x ∂q/∂y − ∂q/∂x ∂ψ/∂y and

q = ∇2ψ − L−2
D ψ (4.17)

with L−2
D = f 2

0 /c2, where LD is the deformation radius, also called the Rossby length
or scale. Equation (4.14) is the evolution equation of the quasi-geostrophic potential
vorticity q in (4.15), alternatively given by (4.16) with (4.17). This evolution equation
together with geostrophic balance relation (4.10) comprises the quasi-geostrophic
model on an f -plane.

The quasi-geostrophic model illustrates the basic elements of any balanced model
derived from the primitive equations. These elements are one evolution, or prognostic,
equation and two balance, or diagnostic, relations. By comparison, the primitive
equations have three evolution equations. Thus, in the case of both the primitive
equations and any balanced model, the number of evolution equations is equal to the
number of normal modes.

An alternative, shorter derivation of the quasi-geostrophic model, avoiding in
particular the lengthy Fourier transformation from (4.13) to (4.14), is possible and
especially beneficial for guiding the derivation of the equatorial balanced model in the
next section. It is based on the fact that the general relation in terms of wavenumber
space (4.12), and in the present case specific relation (4.13), is formally identical to its
equivalent in physical space. This allows the derivation of the quasi-geostrophic model
to be carried out entirely in physical space except for determining the eigenvalues.

To demonstrate this, we begin with determining the eigenvector of L in (3.5) that
corresponds to the eigenvalue ωR =0 in (4.4). It is easy to see that it is ys

0 as given
by the second equation in (4.7). Eliminating ψ(x, t) leads to the geostrophic balance
relation in (4.10). Guided by (4.13), we use the same ys

0, but as given by the first
equation in (4.7), into the shallow water equations (3.3) and (3.4), apply the conjugate
transpose of eR(x) in (4.8) from the left, and thus obtain the quasi-geostrophic
potential vorticity evolution equation in (4.14) with (4.15).

Salmon (1998, § 2.10) shows that the derivation in wavenumber space presented in
this section can be generalized to lead to the quasi-geostrophic model on a β-plane,
i.e. f = f0 + βy, with a varying bottom. However, this is only possible by including
the extra terms in the nonlinear term N in (3.5) despite the fact that the extra terms
containing β are linear. This illuminates the inconsistency that although f is assumed
to vary, the geostrophic balance relation of the quasi-geostrophic model on a β-plane
is given in terms of the constant f0.

5. Equatorial balanced model
The equatorial balanced model is derived on an equatorial β-plane in much the

same way as the quasi-geostrophic model is derived on an f -plane in the previous
section.

5.1. Balance relations

We first determine the eigenvalues and eigenvectors by solving (3.8) for k = 0 and (3.9)
for k �= 0, where in the present case we set f =βy. This creates the non-constant term
ω(βy/c)2 in the bottom centre element of the matrix in (3.9). We therefore express xs

in (3.8) and (3.9) not in terms of its Fourier transform as in (4.1) but in terms of its
Hermite transform, which takes the form

[ũ(k, y, t), η̃(k, y, t)] =

∞∑
m=0

[ûm(k, t), η̂m(k, t)] φm(y ′), (5.1)
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where y ′ =
√

β/cy and φm(y ′) are the Hermite functions. They and their properties
are described in appendix C. The resulting forms of (3.8) for k = 0 and (3.9) for k �= 0
are multiplied by φm(y ′) and integrated over all y ′. Since φm(y ′) are orthonormal, as
expressed in (C 3), we have for k = 0,

∞∑
m=0

⎛
⎜⎝

−ωδn,m iβbn,m 0

−iβbn,m −ωδn,m −ican,m

0 −ican,m −ωδn,m

⎞
⎟⎠

⎛
⎜⎝

ûm(k, t)

v̂m(k, t)

η̂m(k, t)

⎞
⎟⎠ = 0 (5.2)

and for k �= 0, using (C 9),

∞∑
m=0

⎛
⎜⎜⎝

[ (
ω
c

)2 − k2
]
δn,m ikan,m − i β

c
ω
c
bn,m 0

0 iω
c
an,m − i β

c
kbn,m

[ (
ω
c

)2 − k2
]
δn,m

0
[ (

ω
c

)2 − k2 − βk

ω
− (1 + 2n) β

c

]
δn,m 0

⎞
⎟⎟⎠

⎛
⎜⎝

ûm(k, t)

v̂m(k, t)

η̂m(k, t)

⎞
⎟⎠ = 0,

(5.3)
where

an,m =

∫ ∞

−∞
φn

∂φm

∂y
dy ′, (5.4)

bn,m =

∫ ∞

−∞
φnyφm dy ′ (5.5)

and δn,m denotes the Kronecker delta.
The smallest eigenvalue of (5.2) and (5.3), respectively, is the frequency of the Rossby

normal mode, denoted by ωR , which in the present case consists of the equatorial
Rossby waves. The other two are the frequencies of the gravity normal modes, denoted
by ωG± , consisting of equatorial gravity waves. For n= 0, the equatorial Rossby and
gravity waves are conventionally interpreted as mixed Rossby–gravity, or Yanai, wave
and the westward-propagating Kelvin, or anti-Kelvin, wave. A fourth frequency is
that of the Kelvin wave, given by ωK = ck and depicted in figure 1. Because the Kelvin
wave is characterized by v =0, its frequency cannot be obtained from (5.2) and (5.3)
and thus must be derived separately (Gill 1982, § 11.5).

We are interested in the smallest eigenvalue ωR . For k = 0, it is determined from (5.2),
which gives ωR = 0. For k < 0, it is one of the three solutions of the bottom centre
matrix element in (5.3) set to zero, i.e. the dispersion relation, given by(ω

c

)2

− k2 − βk

ω
− (1 + 2n)

β

c
= 0. (5.6)

Solving for k, gives

k = − β

2ω
±

√(ω

c

)2

+
1

4

(
β

ω

)2

− (1 + 2n)
β

c
, (5.7)

which allows the three solutions for the eigenvalue ω to be depicted as a function
of k and n (Moore & Philander 1977). Figure 1 displays the smallest eigenvalue ωR

for n= 1, 2, 3 as the solid curve labelled 1 and the two below it, respectively. Below
them would be those for n> 3. The other two solutions ωG± for n= 1 are displayed
as one dashed-dotted curve, following the general convention of displaying negative
ω for k < 0 as positive ω for k > 0. Above them would be those for n> 1. A special
case is n= 0, whose three solutions are depicted by the two intersecting curves. The
straight curve is the dispersion relation of the westward-propagating Kelvin wave
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ω′G+ ω′G–

ω′R

ω′K

ω
′

− 1√
2

0.5–1.0–2.0 0

k′

Figure 1. Dispersion relations. The axes show non-dimensionalized zonal wavenumber
k′ =

√
c/βk and frequency ω′ = ω/

√
βc. Equatorial Rossby waves for n= 1, 2, 3 correspond

to the curves below the label 1, where the solid curves show the exact ω′
R , given by (5.7)

or iteration (5.8), and the dotted curves (hardly distinguishable from the solid curves) the
approximate ω′

R in (5.13). The two intersecting curves represent the three solutions of (5.6) for
n= 0. They define four parts, labelled a, b, c and d. Parts a and d correspond to the mixed
Rossby–gravity, or Yanai, wave and parts c and b to the westward-propagating Kelvin, also
called anti-Kelvin, wave. Alternatively, parts a and b correspond to the equatorial Rossby wave
for n= 0 and parts c and d to the equatorial gravity wave for n= 0. Part a is approximated by
the dotted curve labelled 0, which is given by the first iteration of (5.8) with n= 0. Equatorial
gravity waves for n= 1 correspond to the dotted–dashed curve. The curve corresponding to
the Kelvin wave is labelled by ω′

K .

whose zonal velocity becomes unbounded for large y and is therefore not physical
(e.g. Pedlosky 1987, p. 678). The other curve is the dispersion relation of the mixed
Rossby–gravity wave because it has the characteristics of an equatorial Rossby wave
for k � −

√
β/c/

√
2 and that of a gravity wave for k � −

√
β/c/

√
2 (Matsuno 1966).

These two intersecting curves offer an alternative interpretation suggested by Matsuno
(1966), who points out that their intersection allows them to be split into four parts,
labelled a, b, c and d in the figure. The curve made up of parts a and b has the shape
of an equatorial Rossby wave dispersion relation and the curve made up of parts c
and d has that of an equatorial gravity wave dispersion relation.

An explicit analytic expression for the smallest eigenvalue ωR can be obtained by
explicitly solving (5.6), which is a cubic equation in ω (e.g. Groove 2004, p. 278).
The result, however, is too complicated to be used in the derivation of the equatorial
balanced model. We therefore determine ωR for all n, including the one for n=0
depicted by the curve made up of parts a and b in figure 1, by re-writing (5.6) as

ω[j+1] =
−βk

k2 + (1 + 2n)β/c − (ω[j ]/c)2
, (5.8)

where j is an index, setting ω[0] = 0, and iterating until (ω[j + 1] − ω[j ]) → 0
(appendix D).

The eigenvector corresponding to the smallest eigenvalue ωR , and therefore spanning
the Rossby manifold, is determined next. In (5.2) and (5.3), using (C 5) and (C 6), the
coefficients an,m and bn,m can be expressed as linear functions of δn,m−1 and δn,m+1 with
constant coefficients, but not of δn,m only. This means that it is generally impossible
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to obtain a set of three linear equations for each value of k and n as it is possible for
each value of k and l for the case of constant f in the previous section. However, we
can require that for each value of n, the eigenvector corresponding to the eigenvalue
ωR and given by (5.2) or (5.3) must have ûm = η̂m = 0 for all m �= n. This allows (5.2)
and (5.3) to be, respectively, expressed as a set of three equations, each of which has
the form ∫ ∞

−∞
φn {. . .} dy ′ = 0. (5.9)

They are satisfied when the respective expressions in curly brackets are equal to zero.
The resulting three equations for each value of n determine the eigenvector and thus
represent the balance relations.

For k =0, the eigenvalue is ωR = 0 and the corresponding eigenvector satisfies (5.2),
which, re-writing it in the form (5.9) and using (5.1), leads to

v̄R = 0, (5.10)

βyūR = −c
∂η̄R

∂y
, (5.11)

where (ūR, η̄R) = [ũR(0, y, t), η̃R(0, y, t)]. These equations are thus the balance relations
defining the zonal average of the balanced flow to be a purely zonal flow that is in
geostrophic balance.

For k < 0, the eigenvalue ωR is one solution of (5.6), which can be shown to satisfy

(ωR/c)2

k2
�

1

(1 + 2n)2
. (5.12)

For n � 1, the ratio on the left-hand side is smaller than 1/9 and therefore we can
neglect (ωR/c)2 in the top left and centre right matrix elements in (5.3). Furthermore,
in the top and centre elements of the centre column, we do not insert the exact
eigenvalue ωR but an approximation to it, given by the first step of the iteration
in (5.8), i.e.

ωR =
−βk

k2 + (1 + 2n) β/c
. (5.13)

This approximate ωR for n=1, 2, 3 is depicted by the dotted curves in figure 1, which
can hardly be distinguished from the solid curve labelled 1 and the two below it,
depicting the corresponding exact ωR . The upper bound of the error, defined by
ε = (ωe

R − ωR)/ωe
R , where ‘e’ is used to denote the exact ωR , is only ε = 0.02, therefore

justifying the approximation in (5.13). For n= 0, we partition negative k into two
intervals. For k � −

√
β/c/

√
2, figure 1 shows that as k increases towards −

√
β/c/

√
2,

the dispersion relation changes from one of the equatorial Rossby waves into one of
the equatorial gravity waves and the ratio on the left-hand side of (5.12) monotonically
increases towards 1. This motivates to replace the exact ωR , as for n � 1 above, by
the approximate ωR in (5.13), shown by the dotted curve labelled 0 in figure 1. Thus,
the dispersion relation has the shape of one of the equatorial Rossby waves and the
ratio on the left-hand side of (5.12) only increases towards 4/9. The upper bound
of the error in the n= 0 case is ε =0.33, indicating that the approximation is not as
good as that for n � 1. The effects of this approximation are discussed in § 5.3. For
−

√
β/c/

√
2 � k < 0, the exact eigenvalue is ωR = − ck.

Implementing all of the above, we rewrite (5.3) in form (5.9), set the expression in the
curly brackets to zero, replace m with n and multiply the resulting equations by −iβ
and divide them by ωR in (5.13). For k < 0 and all n, except for −

√
β/c/

√
2 � k < 0
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and n= 0, the eigenvector corresponding to the eigenvalue ωR in (5.13) thus satisfies

∞∑
n=0

[
ikD̂ (ûnφn) +

(
D̂

∂

∂y
− β2

c2
y

)
(v̂nφn)

]
= 0, (5.14)

∞∑
n=0

[
β

c

(
∂

∂y
− D̂y

)
(v̂nφn) + ikD̂ (η̂nφn)

]
= 0, (5.15)

where

D̂ = −k2 − (1 + 2n)
β

c
. (5.16)

For the interval −
√

β/c/
√

2 � k < 0 for n= 0, the above leads to v̂n =0 and arbitrary
values for ûn and η̂n, which we set to zero.

Hermite- and Fourier transforming (5.14) and (5.15) with (5.16), as specified by (5.1)
and (3.7), respectively, and using (C 9), leads to

∂

∂x
Du′

R +
∂

∂y
Dv′

R − β2

c2
yv′

R = 0, (5.17)

β

c

∂

∂y
v′

R − β

c
yDv′

R +
∂

∂x
Dη′

R = 0, (5.18)

where

D =

(
∂2

∂x2
+

∂2

∂y2
− β2

c2
y2

)
(5.19)

is the modified Helmholtz operator and the primes denote perturbations from the
zonal mean. These equations are thus the balance relations defining the perturbation
from the zonal mean flow of the balanced flow. An immediate implication is that
they do not permit a Kelvin wave. This is because a Kelvin wave is characterized by
v′

R =0, for which (5.17) and (5.18) give u′
R = η′

R = 0.
In the context of the geometric framework described in § 2, a vector on the Rossby

manifold is in the present case given by

ys
0 = (uR, ηR) = ȳs

0 + y′s
0, (5.20)

which can be expressed equivalently to (4.7) in terms of a function, whose zonal mean
and perturbation are, respectively, denoted by Ψ̄ and Ψ ′, as

ȳs
0 = (ūR, η̄R) = ēR(x)Ψ̄ (x, t), (5.21)

y′s
0 = (u′

R, η′
R) = e′

R(x)Ψ ′(x, t). (5.22)

To determine ēR , we write (5.10) and (5.11) in the form

ē†
G1 · ȳs

0 = 0, (5.23)

ē†
G2 · ȳs

0 = 0, (5.24)

which implies because of (5.21) that we must have

ē†
G1 · ēR = ē†

G2 · ēR = 0. (5.25)
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We therefore obtain

ēR =

⎛
⎜⎜⎝

− ∂
∂y

0

β

c
y − β

c

(
∂
∂y

)−1

⎞
⎟⎟⎠ ; ēG1 =

⎛
⎜⎝

0

− ∂
∂y

0

⎞
⎟⎠ ; ēG2 =

⎛
⎜⎝

0

− β

c
y − β

c

(
∂
∂y

)−1

0

⎞
⎟⎠ . (5.26)

To determine e′
R , we multiply (5.17) and (5.18) on the left by D−1. The result is then

rewritten as (5.10) and (5.11), leading to

e′
R =

⎛
⎜⎝

− ∂
∂y

+ 3 β2

c2 D−1y
∂
∂x

β

c
y − 3 β

c
D−1 ∂

∂y

⎞
⎟⎠; e′

G1 =

⎛
⎜⎝

− ∂
∂x

− ∂
∂y

− 3 β2

c2 D−1y

0

⎞
⎟⎠; e′

G2 =

⎛
⎜⎝

0

− β

c
y − 3 β

c
D−1 ∂

∂y

− ∂
∂x

⎞
⎟⎠.

(5.27)
These vectors are analogous to those in (4.5) and in particular ēR and e′

R are also
analogous to eR in (4.8). In this case, however, they cannot be normalized and are
therefore not marked by a hat. As expressed by (5.25), which is also the case for
the primed vectors, the vectors with subscripts G1 and G2 are orthogonal to that
with subscript R in both cases. However, they are not mutually orthogonal. For this
reason, we have used G1 and G2 to distinguish them from the mutually orthogonal
ones with subscripts G± in (4.5).

5.2. Evolution equation

The equatorial balanced model, as any other balanced model, has two components:
the balance relations derived in the previous section and an evolution equation derived
in this section. In the geometric framework described in § 2, the evolution equation is
given by (2.4). We use (2.4) in its rewritten, more practical form (4.12) in which eR

represents both ēR in (5.26) and e′
R in (5.27). For the equatorial balanced model, (4.12)

takes a complicated form. It can, however, be substantially simplified by making two
approximations that are justified a posteriori.

The first approximation is to replace e†
R by

e†
Ra =

(
∂

∂y
, − ∂

∂x
,
ζR + βy

c + ηR

)
, (5.28)

where ζR = ∇ × uR . While eR spans the Rossby manifold, eRa can be thought of
spanning an approximate Rossby manifold. The close relation between eR and eRa

is apparent, especially by noting that the linear form of the third element of eRa

is (β/c)y. This first approximation means that the evolution of a single point on
the approximate slow manifold described by (2.3) is not projected onto the Rossby
manifold leading to (4.12), but onto the approximate Rossby manifold leading to (4.12)
with e†

R replaced by e†
Ra . Its linear terms thus take the form

e†
Ra · ẋs = e†

Ra · ( ẏ0 + ż1) , (5.29)

−ie†
Ra · Lxs = −ie†

Ra · L ( y0 + z1) , (5.30)

where xs = y0 + z1 is a vector in the approximate slow manifold, as derived in § 2. The
second approximation is to neglect the terms depending on z1 in (5.29) and (5.30).
The result of both approximations thus is that (4.12) simplifies to

e†
Ra · ẏs

0 = −ie†
Ra · L ys

0 + e†
Ra · N( ys

0). (5.31)
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To assess the degree of accuracy of these two approximations, we compare the
linear forms of (5.31) and (4.12). The linear form of the latter is identical to the linear
form of the shallow water equations (2.1) multiplied from the left by e†

R . Thus, the
comparison is between the linear dynamics described by the equatorial balanced model
and the low-frequency component of the linear dynamics described by the shallow
water equations. Their respective dispersion relations are compared below, which
shows that the dispersion relation of the equatorial balanced model approximates
that of the shallow water equations strikingly well. This implies that the above two
approximations minimally change the linear dynamics and in particular that eRa is a
good approximation of eR , which in turn implies that the nonlinear terms are also
approximated well.

The form of (5.31) is equivalent to that of (4.13). As pointed out in the second
paragraph below (4.17), (4.13) is independent of a particular space and the simplest
path from (4.13) to (4.14) with (4.15) turns out to be that taken entirely in physical
space. The same applies to (5.31) and therefore we take the equivalent path in physical
space. This means we note that ys

0 is given by the first equation in (5.20) and substitute

it for (u, η) in (3.3) and (3.4) with f = βy and multiply the result from the left by e†
Ra

in (5.28). In this way, we determine the individual terms separately, which become

e†
Ra · ẏs

0 = −(c + ηR)
∂

∂t

(
ζR + βy

c + ηR

)
(5.32)

e†
Ra · L ys

0 = uR · ∇(βy) + βy∇ · uR − ζR + βy

c + ηR

c∇ · uR (5.33)

e†
Ra · N

(
ys

0

)
= uR · ∇ζR + ζR∇ · uR +

ζR + βy

c + ηR

[−uR · ∇(c + ηR) − ηR∇ · uR]. (5.34)

Thus, (5.31) becomes

∂q

∂t
+ uR · ∇q = 0, (5.35)

where q is the potential vorticity, given by

q =
ζR + βy

c + ηR

. (5.36)

The evolution equation of the equatorial balanced model is therefore the material
conservation of potential vorticity.

5.3. Dispersion relation

We derive the dispersion relation of the equatorial balanced model in particular
to understand and justify some of the approximations made in its derivation.
Linearizing (5.35) gives

∂

∂t

(
ζR − βy

c
ηR

)
= −vRβ. (5.37)

The zonal average of the left-hand side of (5.37) vanishes because of (5.10). Using
this after substituting the second equation in (5.20) with (5.21) and (5.22), where ēR

and e′
R are given by (5.26) and (5.27), into (5.37), gives

∂

∂t

[
D + 3

β2

c2

(
yD−1 ∂

∂y
− ∂

∂y
D−1y

)]
Ψ ′ = −β

∂Ψ ′

∂x
. (5.38)
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Figure 2. Dispersion relations of the equatorial balanced model with α = 0 (dashed curves).
The other curves (solid and dotted) are identical to those in figure 1 and are displayed for
comparison.

We take Ψ ′ to have the form of a harmonic wave in the x-direction, given by

Ψ ′ ∝ φn(y
′)eikx−iωt , (5.39)

where k < 0 and y ′ =
√

β/cy as before. Using (C 5), (C 6) and (C 10), allows to show
that (

yD−1 ∂

∂y
− ∂

∂y
D−1y

)
φn(y

′)eikx =

{
n + 1

k2 + [1 + 2(n + 1)] β/c

− n

k2 + [1 + 2(n − 1)] β/c

}
φn(y

′)eikx. (5.40)

Substituting (5.39) and (5.40) into (5.38), leads to the dispersion relation of the
equatorial balanced model,

ω =
−βk

k2 + (1 + 2n)β/c − 3β2/c2

[
n + 1

k2 + (2n + 3) β/c
− n

k2 + (2n − 1) β/c

] . (5.41)

Figure 2 depicts (5.41) as dashed curves. The solid and dotted curves are identical to
those in figure 1 and included for comparison. For n= 2, 3, dispersion relation (5.41)
(bottom two dashed curves) approximates well that of the shallow water equations
(bottom two solid curves). The approximation is even better for n � 4 (not shown).
This justifies for n � 2 the approximation made in the derivation of the equatorial
balanced model. However, the top two dashed curves indicate that the equatorial
balanced model fails to approximate well the dispersion relation of the Rossby-
wave part of the Rossby–gravity wave and the equatorial Rossby wave for n= 1 of
the shallow water equations (top solid curve labelled a and the solid curve below
it, respectively). This shortcoming is resolved by a generalization of the equatorial
balanced model, which is presented in the next section.

5.4. Generalization

To obtain an equatorial balanced model that better approximates the Rossby-wave
part of the mixed Rossby–gravity wave corresponding to the solid curve labelled a in
figure 2 than that corresponding to the top dashed curve, we generalize its derivation.
This is achieved by generalizing the approximation to the smallest eigenvalue ωR

in (5.13) by replacing 2n by 2n+ α, where α is a free parameter. This amounts to a
change in the first guess used in the iterative solution (5.8). The only constraint on α
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Figure 3. Dispersion relations of the equatorial balanced model with α = 2.5 (top dashed
curve and the three dashed curves below it, which are overlaid by the bottom three solid
curves). The dotted curves are the approximations of ωR as given by (5.13) for n= 0, 1, 2, 3,
respectively, from top to bottom with 2n replaced by 2n+ α, where α = 2.5. The solid curves
are identical to those in figure 1 and displayed for comparison.

is that the first guess ωR resulting from the replacement of 2n by 2n+ α should allow
the iteration to converge to the exact ωR given by (5.6). The introduction of α only
affects D̂ in (5.16), which generalizes to

D̂α = −k2 − (1 + 2n + α)
β

c
, (5.42)

and consequently its form in physical space, given for α = 0 by D in (5.19), becomes
the redefined modified Helmholtz operator

Dα =

(
∂2

∂x2
+

∂2

∂y2
− β2

c2
y2 − β

c
α

)
. (5.43)

With this change, dispersion relation (5.41) of the equatorial balanced model
generalizes to

ω =
−βk

k2 + (1 + 2n)β/c − 3β2/c2

[
n + 1

k2 + (2n + 3 + α) β/c
− n

k2 + (2n − 1 + α) β/c

] .

(5.44)

The parameter α allows us to adjust the dispersion relation of the equatorial balanced
model to better fit that of the shallow water equations, in particular regarding that
of the Rossby-wave part of the mixed Rossby–gravity wave. A good adjustment is
achieved by simply requiring ω in (5.44) with n= 0 to have the same value as ω of the
mixed Rossby–gravity wave of the shallow water equations at k = −

√
β/c/

√
2, which

is given by ω =
√

βc/
√

2. We thus obtain α =2.5. We have, however, the freedom to
set α to a different value in order to approximate better other desirable properties of
the shallow water equations.

Figure 3 depicts the same dispersion relations as figure 2 but for α =2.5 instead
of α =0. The dispersion relation of the Rossby-wave part of the mixed Rossby–
gravity wave of the equatorial balanced model (top dashed curve) approximates well
that of the shallow water equations (solid curve labelled a). A strikingly accurate
approximation is achieved by (5.44) for the dispersion relation of the equatorial
Rossby waves, indistinguishable from that of the shallow water equations (the three
bottom dashed curves are overlaid with the three bottom solid curves). This result
justifies the cruder approximation compared to that for α = 0 as manifested by the
differences between the respective dotted and solid curves in figures 2 and 3.
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When compared with figure 2, the top dotted and dashed curves for n= 0 in figure 3
extend to k = 0. This represents an alternative to the part of the derivation concerning
the interval −

√
β/c/

√
2 � k < 0 for the case n= 0. This part of the derivation, described

below (5.13), uses the exact solution ωR = − ck, labelled as b, for the smallest
eigenvalue, which implies that v̂0 = 0 and û0 and η̂0 are arbitrary and therefore we set
them to zero as a convention. The alternative is to approximate the exact solution.
This is possible because of the introduction of the parameter α. The approximation is
given by (5.13) in its generalized form, where 2n is replaced by 2n+ α. Relation (5.12)
would then for the particular case of n= 0 becomes (ωR/c)2/k2 � 1/(1 + α)2, justifying
that (ωR/c)2 can be neglected compared with k2 in the present case of α = 2.5. As
a result, we obtain the extension of the top dashed curve from k = −

√
β/c/

√
2 to

k = 0, v̂0 is generally non-zero, and û0 and η̂0 are not arbitrary. This extension of
the curve can be considered to be an approximation to the dispersion relation of the
westward-propagating Kelvin wave, given by the solid curve labelled b, or, because
of its characteristics, the dispersion relation of an additional equatorial Rossby wave
not described by the shallow water equations.

5.5. Summary of the equatorial balanced model

The equatorial balanced model consists of the evolution equation of potential
vorticity (5.35) with (5.36) and two balance relations, respectively, for the zonal
mean flow, given by (5.10) and (5.11), and the perturbation from the zonal mean
flow, given by (5.17) and (5.18), where D is replaced by the more general term Dα

in (5.43) with α being a free parameter. In order to obtain an accurate dispersion
relation we suggest α = 2.5. The dispersion relation is given by (5.44). It is depicted
in figure 3 (dashed curves) and approximates the corresponding parts of that of the
shallow water equations (solid curves) strikingly well.

6. Limits
In certain limits the equatorial balanced model takes simpler forms. To this end,

we non-dimensionalize the balance relations in the form of (5.14) and (5.15) with D̂

generalized to D̂α in (5.42) using the scaling

k =

√
β

c
k′; y =

√
c

β
y ′; ωR =

√
βcω′

R, (6.1)

where
√

c/β defines the size of the equatorial deformation radius, also called the
equatorial Rossby length or scale,

ω′
R =

−k′

k′2 + 1 + 2n + α
, (6.2)

and the primes denote non-dimensional variables. Furthermore, we assume an
identical scaling for ûnφn, v̂nφn and η̂nφn, which is possible because η has the dimension
of velocity as pointed out above (3.3). The balance relations thus take the form

∞∑
n=0

[
(û′

nφ
′
n) +

(
−i

1

k′
∂

∂y ′ + i
ω′

Ry ′

k′2

)
(v̂′

nφ
′
n)

]
= 0, (6.3)

∞∑
n=0

[
i

(
ω′

R

k′2
∂

∂y ′ − y ′

k′

)
(v̂′

nφ
′
n) − (η̂′

nφ
′
n)

]
= 0. (6.4)
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Figure 4. Limits: the curves labelled A, B and C are the right-hand sides of (6.5), (6.8) and
(6.10), respectively, where the subscripts indicate the values of ε.

6.1. Scale analysis

We assume isotropy and thus we can apply ∂/∂y ′ ≈ k′. We first consider balance
relation (6.3). Its third term can be neglected if the condition,

y ′ < ε[−k′(k′2 + 1 + α)] (6.5)

is satisfied, where ε is a parameter chosen to be sufficiently smaller than 1. If this is
the case the balance relation does not become (5.17), but instead

∇ · u′
R = 0, (6.6)

where, as in (5.17), the variables are dimensional and the primes indicate a
perturbation from the zonal mean flow. This implies that (5.22) is given in terms of
e′

R in (5.27) with the second term in the top element neglected. By substituting (5.22)
in this particular form into the other balance relation (5.18) with D replaced by the
more general term Dα in (5.43), it simplifies to

βyDαψ − β
∂ψ

∂y
− cDαη

′
R = 0. (6.7)

For all negative k′, the range of y ′ satisfying condition (6.5) covers the area between
the curves labelled A and the negative k′ axis in figure 4, where the subscripts of A
denote the values of ε. It shows that (6.6) is valid in the equatorial region and beyond
it, except for small negative k′ for which it only remains valid within a latitudinal
band around the equator whose width decreases with decreasing |k′|.

Using the simple balance relation (6.6) in place of (5.17) is expected to alter the
dispersion relation of the equatorial balanced model. To determine its altered form,
we substitute (5.22) in the above particular form into (5.37). This leads to (5.38)
without the third term on its left-hand side. In the generalized case, the D−1 operator
in the second term on the left-hand side becomes D−1

α , but the operator D remains

unchanged. We then insert ψ ′(x, t) = ψ̂ ′(y) exp(ikx − iωt), use (6.1), expand ψ̂ ′ in
terms of Hermite functions similarly to (5.1), use (C 5), (C 6) and (C 8), multiply
by φm, use (C 3), and truncate the series. This procedure leads to an eigenvalue
problem with the eigenvalues of the form k′/ω′

R , which can be solved numerically.
The dispersion relation thus obtained is shown by the dashed curves in figure 5.
They should be compared with the dashed curves in figure 3, showing the dispersion
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a

b

0

1

ω
′

0–1–2 − 1√
2k′

Figure 5. Dispersion relation of the equatorial balanced model with α = 2.5 and approxi-
mation (6.6) (dashed curves of which the bottom three are overlaid with the bottom three solid
curves). The solid curves are identical to those in figure 1 and are displayed for comparison.

relation without the above simplification. The dispersion relation is altered minimally
by the simplification, except in the case of the Rossby-wave part of the mixed Rossby–
gravity wave for about −1.5 <k′ � 0. This is, however, consistent with the condition
that the simple balance relation (6.6) is valid only within a latitudinal band around
the equator whose width decreases with decreasing |k′|.

The other balance relation (6.4) can be considered similarly. Its first term can be
neglected if the condition,

y ′ >
1

ε

−k′

k′2 + 1 + α
, (6.8)

is satisfied and in this particular case the scale for the meridional velocity v̂n is set to
be of order εη̂n. If this is the case, the balance relation does not become (5.18), but
instead

βyv′
R = c

∂η′
R

∂x
, (6.9)

which is the expression of geostrophic balance in the zonal direction. This implies that
(5.22) is given in terms of e′

R in (5.27) with the second term in the bottom element
neglected. For all negative k′, the range of y ′ satisfying (6.8) covers the area above
the curves labelled B in figure 4, where the subscripts of B denote the values of ε.

Figure 4 indicates that both (6.6) and (6.9) are valid sufficiently far away from the
equator if |k′| is sufficiently large, i.e. above a curve labelled B and below a curve
labelled A. If they are both valid, (5.22) is given in terms of e′

R in (5.27) with both
second terms in the top and bottom elements neglected. Substituting (5.20) with this
particular form of (5.22) into (5.35) and assuming a case of no zonal mean flow
and that q can be linearized, we obtain (4.16) with q = ∇2ψ − L−2

D ψ + βy, where
L−2

D = (βy)2/c2. This is exactly the modified form of the quasi-geostrophic model on
a β-plane introduced by Salmon (1982, 1998, p. 284) and further studied by Theiss
(2004, equation (1)). It is considered modified because LD is y-dependent instead of
constant. A y-dependent LD , however, is more natural for a β-plane and generally
more realistic.

Instead of neglecting the first term in the other balance relation (6.4) as above, the
second term can be neglected if instead of (6.8) the condition

y ′ < ε
−k′

k′2 + 1 + 2n + α
(6.10)
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is satisfied. If this is the case, condition (6.5) is also satisfied and thus, using (6.6), the
balance relation (6.4) becomes,

βu′
R = cDαη

′
R (6.11)

instead of (5.18). For all negative k′, the range of y ′ satisfying (6.10) with n= 0 covers
the area below the curves labelled C and the negative k′-axis, where the subscripts of
C denote the values of ε. For all negative k′, the range of y ′ decreases with increasing
n. It is, however, possible to increase the range of y ′ and thus the range of validity
of (6.11) if we assume anisotropy with lengths scales being larger in the zonal than the
meridional direction, i.e. we can assume ∂/∂y ≈ rk with r > 1. Consequently, in (6.5)
and (6.10) ε is multiplied by r , thereby increasing the range of y ′.

6.2. Asymptotic analysis

The same limits as given above can be obtained from an asymptotic analysis, which
provides further insight. From (5.6) we determine the frequency of the gravity normal
modes at k =0 and n= 0 to be ωG± =

√
βc. This permits us to express ωR in (6.1) as

ωR = ε
√

βcω′′
R , where

ε =
ωR

ωG±
. (6.12)

The maximum of ωR in (5.13) is at k = −
√

(1 + α)β/c and n= 0, which gives us an
upper bound of ε = 0.27 for α =2.5. Assuming that k′, y ′ and ω′′

R are of order unity
and substituting the expansion in powers of ε given by

[
(û′

nφ
′
n), (v̂

′
nφ

′
n), (η̂

′
nφ

′
n)

]
=

∞∑
p=0

[
(û′

nφ
′
n)p, (v̂′

nφ
′
n)p, (η̂′

nφ
′
n)p

]
εp, (6.13)

into (6.3) and (6.4), shows that the first and second terms in (6.3) and the second and
third terms in (6.4) are of leading order. The leading-order solution is thus, rewritten
as above, given by (6.6) and (6.9). This is consistent with the above scale analysis
because ε = 0.27 > 0.22, where 0.22 is the smallest value of ε necessary for the case
considered here, i.e. (k′, y ′) = (−1, 1), to lie below a curve Aε and above a curve Bε in
figure 4.

To carry out the asymptotic analysis in the vicinity of the equator, we assume
y ′ = εy ′′ with y ′′ being of order unity. Repeating the same procedure, the leading-
order solution becomes (6.6) and (6.11). The different scaling of y implies that we
are assuming the length scale in the y-direction to be of order ε. In this respect as
well, there is consistency between the asymptotic and the scale analyses. Because of
the different scaling r = 1/ε, which has the effect that ε in (6.5) and (6.10) is replaced
by 1, and therefore (k′, y ′) = (−1, ε) satisfies (6.5) and (6.10) (not shown in figure 4).

We refer to (6.9) and (6.11) as the outer and inner solutions, respectively. To
determine the inner limit of the outer solution, we consider the leading-order terms
in (6.4) with (6.13), which is equivalent to (6.9), then substitute y ′ = εy ′′, and take
the limit ε → 0 while keeping y ′′ fixed. Similarly, to determine the outer limit of the
inner solution, we consider the leading-order terms in (6.4) with (6.13) and y ′ = εy ′′,
which is equivalent to (6.11), then substitute y ′′ = y ′/ε, and take the limit ε → 0 while
keeping y ′ fixed. Both limits are zero. Thus, η′

R is given in terms of v′
R in (5.18) and

can be considered as a composite leading-order solution combining (6.9) and (6.11).



348 J. Theiss and A. R. Mohebalhojeh

7. Extensions
The equatorial balanced model, as summarized in § 5.5, describes the balanced

dynamics of an unforced shallow layer of fluid with constant density on an infinite
equatorial β-plane. Extending it so that it can also describe the balanced dynamics
of bounded, forced and stratified fluids requires only minor changes to its derivation.

7.1. Boundaries

A widely used configuration is a channel that is periodic in the zonal direction
and bounded by solid zonal boundaries in the meridional direction. This implies
v = 0 at these boundaries. In the derivation of the equatorial balanced model for the
meridionally unbounded case in this paper, v as well as u and η are expressed in (3.7)
with (5.1) in terms of Hermite functions φn. This enables the use of relation (C 8),
which can be considered an eigenvalue problem with the eigenvalues 2n+ 1 and
the eigenfunctions being the Hermite functions. For the meridionally bounded case
with the boundary condition v = 0, the eigenvalue problem (C 8) remains the same,
except that in place of the integer n, a real number μn must be assumed. This
eigenvalue problem is solved analytically by Cane & Sarachik (1979). They show that
the eigenvalues μn do not differ much from n, as also noted by Gent & McWilliams
(1983), and that the eigenfunctions are not the Hermite functions, but similar and
also a complete orthonormal set. The equatorial balanced model for the meridionally
bounded case can therefore be derived by complete analogy to the meridionally
unbounded case. Between the two cases, only the eigenvalues and eigenfunctions
differ and thus only the transformations of form (5.1) differ. This implies that in
physical space the respective derivations and the resulting equatorial balanced models
for both cases are formally identical.

Their respective dispersion relations, however, differ because of the differing
eigenvalues of n and μn. Furthermore, an analytical expression of the dispersion
relation, as derived for the meridionally unbounded case in § 5.3, cannot be derived
for the meridionally bounded case because its eigenfunctions, unlike the Hermite
functions of the meridionally unbounded case, do not satisfy (C 5) and (C 6).

To solve the equatorial balanced model for the meridionally bounded case, boundary
conditions must be specified for the perturbation from the zonal mean flow. For
the zonal mean flow itself no boundary conditions need to be specified because
we have (5.10) and (5.11), which allows either ūR or η̄R to be arbitrary. For the
perturbation from the zonal mean flow, boundary conditions must be specified to
solve two balance relations (5.17) and (5.18) with D generalized to Dα in (5.43). It
proves useful to rewrite them in the form

Dα

(
∇ · u′

R

)
= 3

β2

c2
yv′

R, (7.1)

Dα

(
βyv′

R − c
∂η′

R

∂x

)
= 3β

∂v′
R

∂y
. (7.2)

Both are elliptic equations and therefore suitable boundary conditions must be
specified for the terms in the brackets at the zonal boundaries. It is remarkable that
balance relations (6.6) and (6.9), which are valid sufficiently far away from the equator,
are identical to the terms in brackets set to zero. This suggests to place the zonal
boundaries sufficiently far away from the equator so that zero Dirichlet boundary
conditions can be used for the terms in brackets. Together with the boundary condition
v′

R = 0, these imply that at the zonal boundaries ∂η′
R/∂x = 0 and that u′

R remains
to be specified. Solving (7.1) and (7.2), which must be done iteratively because v′

R
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is also unknown, gives v′
R , ∇ · u′

R and η′
R . Since q in (5.36) is given, we can thus

also determine ζ ′
R . To obtain the velocity, we express it as u′

R = k̂ × ∇ψ ′ + ∇χ ′, where
ψ ′ is the streamfunction and χ ′ the velocity potential. This gives the two Poisson
equations ∇2ψ ′ = ζ ′

R and ∇2χ ′ = ∇ · u′
R , which can be solved by specifying at the zonal

boundaries v′
R , which is zero, and u′

R (Chen & Kuo 1992a, b). The boundary condition
for u′

R can initially be arbitrary, but then must evolve according to Du′
R/Dt =0 to

guarantee the conservation of circulation. An equivalent condition also applies to the
quasi-geostrophic model. It is derived by Phillips (1954) and is stated for example by
(24) in McWilliams (1977). The equivalence becomes apparent by assuming that u′

R

is geostrophic, as it is the case for the quasi-geostrophic model, expressing it in terms

of a streamfunction as u′
R = k̂ × ∇ψ ′, and integrating Du′

R/Dt = 0 along the zonal
boundaries.

Solid meridional boundaries in the zonal direction and in fact any arbitrarily shaped
boundary are treated similarly, but pose the challenge of specifying appropriate
boundary conditions for the terms in brackets in (7.1) and (7.2) at such boundaries.

7.2. Forcing

Forcing is incorporated by adding a mechanical force Fm, such as wind forcing, to
the right-hand side of (3.1) and a thermal force Ft , such as radiative relaxation, to the
right-hand side of (3.2). Treating Fm and Ft in the same way as the nonlinear terms
in the same equations throughout the derivation of the equatorial balanced model
results in (5.35) with the term (∇ × Fm − qFt ) /(c + ηR) added to the right-hand side.

7.3. Stratification

The simplest approach to extend the equatorial balanced model to describe stratified
flows is to consider a stack of immiscible shallow layers of fluid with constant density,
where the constant density in a layer is larger than that in the layer above it. The
dynamics in each layer is described by the shallow water equations (3.1) and (3.2),
except that gh in (3.1) is replaced by the pressure in each layer, denoted by p,
and that h denotes the layer thickness. Each layer’s thickness h depends on the
dynamical pressure in the same layer and on those in the layers above and below
it (e.g. Mohebalhoje & Dritschel 2004), where the dynamical pressure in a layer is
the pressure with its vertical variation within this layer omitted. This dependence
dynamically couples the layers. The linear dynamics, however, can be decoupled by
expanding (u, p, h) in terms of mutually orthogonal vertical modes (e.g. McWilliams
2006, § 5.1.3). This results in a set of evolution equations for the expansion coefficients
of (u, p), whose linear form consists of closed sets of evolution equations for the
coefficients of each vertical mode. Each of these sets is formally identical to the linear
form of the shallow water equations of a single layer, given by (3.1) and (3.2). The
vertical decomposition therefore allows to repeat the derivation of the equatorial
balanced model for the case of a single layer by complete analogy for the case of a
stack of layers.

For the case of continuous stratification the same general method can be applied
to the Boussinesq equations as well as their hydrostatic approximation, that is, the
primitive equations. In this case, too, the linear dynamics, decoupled through the use
of vertical modes, is given by closed sets of evolution equations for the coefficients of
each vertical mode, which is formally identical to the above case of a stack of layers.
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8. Comparison with other balanced models
The most closely related balanced models to the equatorial balanced model

introduced in this paper are those derived from the shallow water equations (3.3)
and (3.4) rewritten in terms of the variables

q =
ζ + βy

c + η
, (8.1)

δ = ∇ · u, (8.2)

γ = f ζ − c∇2η − βu. (8.3)

The resulting equations

∂q

∂t
= {−u · ∇q} , (8.4)

∂δ

∂t
= γ + {−u · δ − δ2 + 2J (u, v)}, (8.5)

∂γ

∂t
= c2∇2δ − f 2δ − 2βf v + cβ

∂η

∂x

+
{

−u · ∇γ − δγ − βδu + βvζ + c∇η · ∇2u + cη∇2δ
}

(8.6)

express the shallow water equations in (q, δ, γ )-representation. The curly brackets are
nonlinear terms.

The (q, δ, γ )-representation allows for simple definitions of balance relations. This
is best illustrated by the case of an f -plane, i.e. f = f0 and β = 0, following by
analogy the derivation of the quasi-geostrophic model on an f -plane in § 4. Fourier
transforming the linearized form of (8.4)–(8.6) using (3.7) and (4.1) with (u, η) replaced
by (q, δ, γ ), allows to determine the eigenvectors spanning the phase space. Because
of the change in variables the eigenvectors are not given by (4.5), but simply by
(êR, êG+, êG−) = [(1 0 0), (0 1 0), (0 0 1)]. The Rossby normal mode is thus represented
purely by q and the two gravity normal modes purely by δ and γ . The vector analogous
to the vector in (4.8) is thus eR = (1 0 0). Following the derivation below (4.8) by
analogy, the two balance relations are therefore given by δ = γ =0. They are the
geostrophic balance relation and therefore, when rewritten, give (4.10). The analogous
steps from (4.12) to (4.14) can be carried out entirely in physical space, as explained in
the second paragraph below (4.17). In this case this means substituting the geostrophic
balance relation as given by (4.7) into (8.4)–(8.6) and multiplying the result from the
left by eR = (1 0 0), which trivially gives (4.14), except that q is not given in its linear
form (4.15) but its nonlinear form (8.1) in terms of (4.7). We thus have obtained
a balanced model consisting of the evolution equation (8.4) and the two balance
relations δ = γ = 0. It represents a generalization of the quasi-geostrophic model on
an f -plane.

For an equatorial β-plane, the analogous balanced model is not derived but defined
to consist of evolution equation (8.4) and two balance relations given by δ = γ =0.
Because δ =0 we can write u = − ∂ψ/∂y and v = ∂ψ/∂x, ψ being a streamfunction,
and thus the balanced model in its linear form becomes

∂

∂t

(
∇2ψ − β

c
yη

)
= −β

∂ψ

∂x
, (8.7)

βy∇2ψ + β
∂ψ

∂y
− c∇2η = 0. (8.8)

This is strikingly similar to the linear form of the equatorial balanced model when (6.6)
is valid, whereby the only difference is between one of their respective balance
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Figure 6. The common dispersion relation of the two balanced models with δ = γ = 0 and
δ = δ(1) = 0 discussed in § 8. The solid curves are identical to those in figure 1 and are displayed
for comparison.

relations, namely between (6.7) and (8.8). To determine the corresponding dispersion
relation, we substitute [ψ(x, t), η(x, t)] = [ψ̂(y), η̂(y)] exp(ikx−iωt) into (8.7) and (8.8),
non-dimensionalize using (6.1), expand [ψ̂(y), η̂(y)] as a series in terms of Hermite
functions similarly to (5.1), use (C 5), (C 6) and (C 8), eliminate η̂, multiply by φm,
use (C 3), and truncate the series. This solution procedure leads to a generalized
eigenvalue problem with eigenvalues of the form k′/ω′

R , which can be solved
numerically. The resulting dispersion relation is depicted by the dashed curves in
figure 6. They should be compared with the dashed curves in figure 5, depicting the
dispersion relation of the equatorial balanced model when (6.6) is valid. Despite the
striking similarity mentioned above, a noticeably higher accurate representation of
the dispersion relation of the shallow water equations, depicted by the solid curves
in both figures, is achieved by the dispersion relation of the equatorial balanced
model with approximation (6.6) than by that of the balanced model based on the two
balance relations γ = δ =0.

Another comparison between the equatorial balanced model and the balanced
model based on the two balance relations γ = δ = 0 can be made sufficiently far
away from the equator, where for the equatorial balanced model not only (6.6), but
also (6.9) is valid. For this case, substituting (5.22) into (6.9) results in βyψ = cη,
where for clarity the subscript ‘R’ and the primes have been dropped. Taking ∇2 gives
γ2 = 0, where

γ2 = f ζ − c∇2η − 2βu, (8.9)

with f = βy. Compared to γ in (8.3) the only difference is the factor 2 in the last term.
Replacing the one balance relation γ =0 by γ2 = 0 therefore changes the balance in
such a way that the resulting balanced model becomes identical to the equatorial
balanced model when (6.6) and (6.9) are valid and thus also to the modified quasi-
geostrophic model introduced by Salmon (1982), described in § 6.1.

In its linearized form, the balanced model based on the two balance relations
δ = γ = 0, and therefore its dispersion relation shown in figure 6 (dashed curves),
remains the same if its two balance relations were replaced by δ = ∂δ/∂t = 0. These
conditions were first suggested by Bolin (1955) and Charney (1955). They inspire an
entire hierarchy of balanced models consisting of evolution equation (8.1) and the
two balance relations δ(n) = δ(n+1) = 0, where δ(n) = ∂nδ/∂tn and δ(0) = δ (Hinkelmann
1969; McIntyre & Norton 2000; Mohebalhojeh & Dritschel 2001). Similarly, another
hierarchy is defined by using δ(n) = γ (n) = 0 (Machenhauer 1977; Lorenz 1980; Tribbia
1984; Vautard & Legras 1986; Warn & Menard 1986; Mohebalhojeh & Dritschel
2001) and a third by γ (n) = γ (n+1) = 0 (Mohebalhojeh & Dritschel 2001). All models
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Figure 7. Comparison between the Bolin–Charney (solid curves), the equatorial balanced
model (dashed curves) and the shallow water equations (dotted curves). Shown is ω′/k′ as
a function of k′2, where the primes denote the non-dimensional variables in (6.1), for the
cases (a) n= 1 and (b) n= 2. The solid curves are taken from figures 7 and 5 of Gent &
McWilliams (1983), respectively. These curves exhibit singularities as k′2 tends to zero, which
Gent & McWilliams (1983) refer to as (a) “discontinuous” and (b) “infinite slope”.

with n > 0 do not share the simplicity of the equatorial balanced model and we do
not compare them with it.

The Bolin–Charney model (Bolin 1955; Charney 1955, 1962), or balance equations,
is another balanced model also valid in the equatorial region. It consists of the
evolution equation (8.1) and two balance relations. One is obtained by applying
δ = ∂δ/∂t =0 to (8.5), resulting in what is known as the Bolin–Charney balance
equation

γψ + 2J (uψ, vψ ) = 0, (8.10)

where γψ is given by γ in (8.3) with u in the last term replaced by uψ . The subscript
ψ denotes the rotational velocity component, whereas the velocity is not necessarily
purely rotational. The other balance relation is obtained by taking the time derivative
of (8.10), resulting in an expression given in terms of the time derivatives of ζ

and η. The time derivatives are then replaced using shallow water equations (3.3)
and (3.4), where the velocity is not purely rotational. The Bolin–Charney model thus
describes divergent flow. In their linearized forms, the Bolin-Charney model and
the balanced model based on the two balance relations γ = γ (1) = 0 are identical. A
detailed discussion of the Bolin–Charney model and its generalization to arbitrarily
high order is given by Mohebalhoje & McIntyre (2007a).

The dispersion relation of the Bolin–Charney model is studied by Gent &
McWilliams (1983), who in particular identify singularities in the small-wavenumber
limit of ω/k as a function of k2. Figure 7 shows their results (solid curves), where
they refer to the singularity as k2 tends to zero in (a) as ‘discontinuous’ and in
(b) as ‘infinite slope’. These singularities do not appear in the shallow water equations
themselves (dotted curves) and the equatorial balanced model (dashed curves). When
compared with the Bolin–Charney model, the figure also shows that the equatorial
balanced model approximates ω/k of the shallow water equations more accurately.
In the equatorial balanced model, this small-wavenumber limit can be improved even
further by tuning the parameter α. However, there may arise some adverse effects on
other desirable aspects of the equatorial balanced model.
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9. Conclusion
A balanced model on an equatorial β-plane, referred to as the equatorial balanced

model, is derived from the shallow water equations. Its derivation is carried out
within the general geometric framework used by Leith (1980) for his derivation of the
quasi-geostrophic model on an f -plane. In this sense, the equatorial balanced model
represents the equatorial counterpart of the quasi-geostrophic model. It consists of
the evolution equation of potential vorticity (5.35) and has two balance relations,
respectively, (5.10) and (5.11) for the zonal mean flow and (5.17) and (5.18), with
the generalized modified Helmholtz operator Dα in (5.43) replacing the operator D,
for the perturbation from the zonal mean flow. These balance relations describe the
intricate balance of forces in the equatorial region in contrast to the simple balance of
two dominant forces described by geostrophic balance outside the equatorial region.
The equatorial balanced model’s dispersion relation (5.44) approximates those of the
equatorial Rossby waves and the Rossby-wave part of the mixed Rossby–gravity wave
of the shallow water equations remarkably well, as seen in figure 3. An interesting
feature is the presence of a free parameter α, giving us the power to adjust the model
for a specific purpose. To obtain the accurate dispersion relation, we set α =2.5.
The equatorial balanced models can be extended to describe also bounded, forced,
and stratified fluids. In comparison with balanced models of equal simplicity the
equatorial balanced model is more accurate if the dispersion relation of equatorial
waves is the prime concern. The lack of singularities of any kind like those noted
by Gent & McWilliams (1983) for the Bolin–Charney model, or balance equations,
should be noted in particular.

The two balance relations of the equatorial balanced model for perturbations from
zonal mean flow (5.17) and (5.18) can be approximated under certain conditions.
In the equatorial region and beyond, except for small wavenumbers for which the
farthest possible distance from the equator decreases with decreasing wavenumber,
the balance relation (5.17) can be approximated by (6.6). With this approximation,
the dispersion relation (dashed curves in figure 5) remains remarkably accurate,
except that of the Rossby-wave part of the mixed Rossby–gravity wave at small
wavenumbers. Sufficiently far away from the equator, the other balance relation (5.18)
can be approximated by geostrophy in the zonal direction, leading to λ2 (6.9). When
both approximations are valid the equatorial balanced model becomes identical to
the modified quasi-geostophic model introduced by Salmon (1982). At and very near
the equator, approximation (6.6) is also valid and approximation (6.9) is replaced by
approximation (6.11).
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OCE-0550658. ARM would like to thank the UK Natural Environment Research
Council for a research fellowship and the Universities of St. Andrews and Tehran for
the support during this research.

Appendix A. Definition of conjugate transpose and Hermitian
The complex inner product of any two N-dimensional vector functions a(x) and

c(x) is defined by

〈a(x), c(x)〉 =

∫ N∑
n=1

an(x)c∗
n(x) dx, (A 1)

where ‘∗’ denotes the complex conjugate and the integral is over a specified space. Let
us assume that a(x) = O(x)b(x), where O(x) is a matrix operator and b(x) a vector
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function both with appropriate dimensions. For example, O(x) can be square, as L
in (3.5), or a vector, as êR in (4.5), and thus b(x) must be N- and 1-dimensional,
respectively. The conjugate transpose, or adjoint, of O(x), denoted by ‘†’, is defined
by

〈O(x)b(x), c(x)〉 = 〈b(x), O†(x)c(x)〉. (A 2)

If O(x) is given in terms of differential operators, calculating its conjugate transpose
involves integrations by parts. A Hermitian, or self-adjoint, O(x) is defined by
O†(x) = O(x).

Appendix B. Steps from (3.8) to (3.9)
We first interchange the rows of the matrix in (3.8), whereby the first becomes

the second, the second becomes the third, and the third becomes the first. We then
calculate consecutively, new 3rd row=ω · 3rd row − if · 2nd row, new 2nd row= ck ·
2nd row+ ω · 1st row, new 1st row= (ω2 − c2k2)/(ck) · 1st row − ω/(ck) · 2nd row, new
3rd row= (c2k2 − ω2) · 3rd row+ (icω∂/∂y + icf k) · 2nd row, 1/c2 · 1st row, −1/c2 ·
2nd row and 1/(c2ω) · 3rd row, which gives (3.9).

Appendix C. Hermite functions
The Hermite functions are defined by

φn(y
′) =

1√
n!2n

√
π

e−y′2/2Hn(y
′), (C 1)

where y ′ is non-dimensional to be distinguished from the dimensional y =
√

c/βy ′

used throughout the paper, n= 0, 1, 2, . . . and −∞ <y ′ < ∞. The functions Hn(y
′) are

the Hermite polynomials (Abramowitz & Stegun 1964, Chapter 22), which can be
obtained using the recurrence relation

Hn+1(y
′) = 2y ′Hn(y

′) − 2nHn−1(y
′) (C 2)

with H0(y
′) = 1. The Hermite functions form a complete set of orthonormal functions,

expressed by ∫ ∞

−∞
φn(y

′)φm(y ′)dy ′ = δnm, (C 3)

where δnm is the Kronecker delta. Using (C 2) and the fact that the Hermite
polynomials satisfy the differential equation

dHn(y
′)

dy ′ = 2nHn−1(y
′), (C 4)

allows to derive

y ′φn =
1√
2
(
√

nφn−1 +
√

n + 1φn+1), (C 5)

dφn

dy ′ =
1√
2
(
√

nφn−1 −
√

n + 1φn+1). (C 6)

Substituting (C 5) and (C 6) into the identity(
d

dy ′ + y ′
)(

d

dy ′ − y ′
)

φn =

(
d2

dy ′2 − 1 − y ′2
)

φn, (C 7)
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ωR

Figure 8. Iteration: the function ω[j+1](ω[j ]) in (5.8) and the diagonal line
ω[j+1] = ω[j ] is depicted.

gives

d2φn

dy ′2 = −(2n + 1 − y ′2)φn. (C 8)

In terms of the dimensional coordinate y defined above, this becomes

− (1 + 2n)
β

c
φn =

(
d2

dy ′2 − β2

c2
y2

)
φn, (C 9)

which can be generalized to D̂φn = Dφn with D̂ and D given by (5.16) and (5.19),
respectively. Multiplication by D̂−1D−1 results in

D−1φn = D̂−1φn. (C 10)

Appendix D. Iteration
Figure 8 shows the general shape of the function ω[j+1](ω[j ]) in (5.8) for each k < 0

and n � 0. The three points where it intersects the diagonal line, which indicates
ω[j+1] = ω[j ], represent the three solutions of (5.6). For k = −

√
β/c/

√
2 and n= 0, the

two intersections at ωR and ωG+ coincide. The figure shows that by choosing ω[0] = 0
as the first guess, the iteration in (5.8) results in the convergence of ω[j ] to ωR as j

increases.
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